找回密码
 立即注册
查看: 938|回复: 5

国内有哪些AI社区?

[复制链接]

1

主题

0

回帖

14

积分

新手上路

积分
14
发表于 2023-7-25 15:49:55 | 显示全部楼层 |阅读模式
想学深度学习,人工智能方面的常识。一年前就有这方面的想法了,但一直只是在学习需要具备的东西。想了解国内哪些社区可以便利个人学习的网站。
回复

使用道具 举报

0

主题

4

回帖

12

积分

新手上路

积分
12
发表于 2023-7-25 15:50:31 | 显示全部楼层
AI技术迅速发展,在绘画、写作、设计、图片处理等领域都有所成就,所以今天诺亚就从多方面为大家推荐几个AI社区、网站及软件,感兴趣的小伙伴看之前记得先码住,看完可以去试试哟~
一、AI绘画——PAI、一键AI绘画

①触站AI

触站本身是一个原创画师作品分享平台,触站AI是它旗下的AI绘画系统。就算你没有专业的美术知识,也可以在这个平台绘制出各种优秀的作品。


输入关键词描述画面即可进行AI绘画,另外,在生成AI图片前,我们还可以单独对服饰、表情、动作、色彩等进行风格设置,这样生成的作品细节会更到位,而且整体效果也更好!


②一键AI绘画

这个软件提供各种风格的绘画模型,只需要输入关键词就能快速生成一至多张绘画作品,很好上手哦。
它生成的图像画面效果都很不错,在细节的处理上也非常到位。
人物的服装、五官、装饰、表情等等都刻画得很细致到位。


场景效果也很不错,很精美。


在“AI绘画”功能中,输入关键词描述我们想要的画面,选择喜欢的模型,设置画布尺寸、生成的图片数量等,很快便能完成创作。


二、AI写作——Effidit

腾讯推出的AI写作辅助工具,我们可以直接在这个智能写作工具里面提问,它可以帮助我们完成各种类型的创作以及解决我们提出的问题。而且这个工具还支持中英文写作,能对文本内容进行智能纠错,提升写作质量。
我们可以下载软件到电脑上进行AI创作,也可以直接在线体验。
在“文本补全”里面输入想要创作的文章主题,选一种风格,即可智能生成全新的文章内容。
我们还可以在文本润色里面进行句子改写、扩写,很方便哦~


三、AI抠图——remove

这是一个在线AI抠图网站,它可以通过AI识别出人物背景,自动抠图,生成透明选区,还能自己按需求为抠图后的图片选择适合的背景,抠图效果很自然,头发丝都能抠取出来。


进入网站后,上传要AI抠图的图片,很快就能得到消除背景的图片,最后将处理后的图片下载到电脑上即可。


四、AI配色——Khroma-AI

运用AI人工智能帮助我们配色的神奇工具,能够根据我们的选择来生成符合我们审美的配色方案,非常有趣!
操作非常方便,只要选中我们喜欢的50种配色,网站就会开始自动配色。


等待AI训练完成,便会为我们生成大量的色卡、渐变色以及配色方案,功能非常丰富。
而且根据自己的喜好,还能进一步调整推荐的效果。


以上就是关于AI社区的分享啦~文章到这里就告一段落,有什么需要修改或者不足之处,欢迎大家评论区批评指点~ @Noah诺亚

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×
回复

使用道具 举报

0

主题

8

回帖

13

积分

新手上路

积分
13
发表于 2023-7-25 15:50:48 | 显示全部楼层
当然是推荐DataLearner,不过这不是ugc社区,但是提供了当前发布的知名模型信息,也会提供很多教程以及最新的AI咨询和知识,初学者以及想要追踪更多AI内容都是很适合的。
AI模型追踪列表:https://www.datalearner.com/ai-models/pretrained-models
AI最新资讯和技术博客:https://www.datalearner.com/blog_list
回复

使用道具 举报

0

主题

5

回帖

3

积分

新手上路

积分
3
发表于 2023-7-25 15:51:02 | 显示全部楼层

随着我们平台逐渐过渡到以视频和实战内容为主,知识星球不再是主要的内容更新平台,近日我们彻底关闭了公开加入的渠道,但是星球依然会维护,原来有的内容依然在,问答也依旧会更新,那么对于还想要加入知识星球的朋友,还有什么方法可以加入有三AI知识星球呢?下面我们来简单说明。
1. 知识星球是什么
知识星球是一个私密社区,前身是小密圈,有iOS和Android两个平台的APP,可以使用微信小程序阅读和网页版进行阅读。


下面分别是用APP,小程序,网页打开我们知识星球的预览。


总体来说,目前知识星球是一个图文为主的私密社区。有三AI知识星球便是依托于知识星球APP,2019年3月创建,目前由言有三全职独立运营。如果说微信公众号是有三AI的第一免费图文生态,那么有三AI知识星球就是我们的第一付费图文生态,两者的共同特点是,只专注于做系统性的原创,从公众号到知识星球,是一个资深有三AI粉的必备进阶之路。
有了微信公众号,为什么我们还要维护知识星球生态?原因主要是两个。
其一:对公众号的图文内容进行补充升级
这是知识星球最重要的功能,我们公众号的内容特点就是:只做原创,并且是系统性的原创,因此很多的内容都需要长期持续进行学习。以知识星球中的网络结构1000变栏目为例,包含了数百期经典模型结构的解读。


其二:提问交流
公众号没有办法进行自由交流以及保存资料,而这是知识星球最重要的功能之一。在星球里可以向有三私信提问,也可以直接自己发状态提问和大家交流,还可以向嘉宾提问。


三:存有一些图文资料
知识星球作为一个社区,还可以补足微信公众号的另外一个短板,存储资料,包括有三分享的也包括星友分享的,里面的资料包括各类课程与直播PPT,电子书,数据代码等,后面我们会专门介绍。
2. 知识星球生态内容汇总
有三AI知识星球包括超过10个内容板块,1000条技术内容,300多次互动。



大家可以点击标签快速进入所有内容,包括#直播# | #言有三的书# | #网络结构1000变# | #手册# #看图猜技术# | #数据集 | #公众号付费图文# | #每周论文推荐# | #AI书籍# | #github资源# | #AI1000问# | #AI知识汇总# | #百家稷学# | #线下活动#等。
下图是生态最核心的内容汇总:




基本的使用方法大家可以观看下面的视频,可以直接点击标签进入各个板块,也可以进行搜索。
接下来我们针对每一个重要板块做介绍。
3. 文档资源下载板块
下面首先来看重要的资源板块,主要是汇总了各类文档资源下载相关的内容,有的是公开直播的PPT,有的是课程PPT,有的是言有三的书相关的文档,有的是公众号付费图文等。
3.1 直播板块
有三偶尔会做一些免费的公开直播,所有的PPT都会在知识星球中给大家进行分享,请大家找到#直播板块进行阅读。


3.2 言有三的书板块
截止目前我们生态已经出了四本书,《深度学习之图像识别:核心技术与案例实战》,《深度学习之模型设计:核心算法与案例实践》,《深度学习之人脸图像处理:核心算法与案例实战》,《深度学习之摄影图像处理:核心算法与案例实战》,所有书籍相关的代码、勘误,以及其他辅助文档资料,都会在知识星球中给大家进行分享,请大家找到#言有三的书板块进行阅读。


3.3 手册板块
这里包括我们生态整理出来的原创技术手册,如超过420页的计算机视觉算法工程师成长指导手册,超过13个入门开源框架的指导手册,项目开发流程等,请大家找到#手册板块进行阅读。




3.4 视频课程板块
我们的一些基础视频课已经给大家免费,配套的PPT也同步在了星球中,请大家找到#视频板块进行阅读。


总之,许多重要的文档资料都会在这里留存,并且会进行版本更新。
4. 网络结构1000变板块
我们星球中内容最多、最活跃的一个板块就是网络结构1000变。在这个板块中,会解读各种任务的论文细节,提供文章下载,介绍开源项目,目前分为通用模型设计,模型优化,GAN,通用基础任务,人脸图像,图像增强与风格化,文本图像,医学与点云图像等板块,共计超过300期内容。


下面是该板块的内容形式,包括论文下载和对论文的基本解读,可以快速了解论文的核心思想,下载同主题文章进行阅读学习。






4.1 模型设计板块
这一部分内容更新的就是通用的模型设计思想,与有三出版的《深度学习之模型设计:核心算法与案例实践》书籍契合度非常高,请大家务必配合一起阅读,可以作为书的补充和进阶。其中内容包括:网络的起源,经典的ImageNet网络,残差网络,分组与分支网络,三维卷积,时序网络,注意力机制,形变网络,多输入网络,多尺度网络等内容,目前有超过70期内容。
请大家使用相关标签进行阅读,#CNN起源# #ImageNet经典# #残差网络# #分组卷积# #注意力机制# #三维卷积#等。












4.2 模型优化板块
这一部分更新的就是通用的模型优化思想,包括紧凑模型设计,动态推理,模型的剪枝、量化、蒸馏,软硬件优化,模型自动搜索等内容,目前有超过70期内容。
请大家使用相关标签进行阅读,包括#模型剪枝# #模型量化# #模型蒸馏# #模型压缩# #硬件优化# #动态推理# #AutoML#等。












4.3 基础视觉任务板块
这一部分更新的就是最常见的几个计算机视觉任务,包括图像/视频分类,图像/视频分割,目标检测,目标跟踪,目前有超过30期内容。
请大家使用相关标签进行阅读,包括#图像分类# #视频分类# #图像分割# #目标检测#等。




4.4 GAN基础板块
这一部分更新的就是GAN相关的基础内容,包括图像生成GAN,图像翻译GAN,图像编辑GAN,目前有超过50期内容。
请大家使用相关标签进行阅读,包括#GAN# #图像生成# #风格化#等。








4.5 人脸与人体板块
这一部分更新的就是人脸与人体相关的内容,包括人脸/关键点检测,人脸识别,人脸三维重建,人脸/人体编辑(表情年龄姿态妆造身份)等,请大家提前学习《深度学习之人脸图像处理:核心算法与案例实战》书籍,目前有超过40期内容。
请大家使用人脸标签进行阅读,包括#三维重建# #人脸# #人脸识别# #人脸编辑#等。




4.6 图像增强与风格化板块
这一部分更新的就是图像质量提升与风格化相关的内容,包括图像降噪,图像超分辨,图像修复,图像增强,图像去模糊等领域,请大家提前学习《深度学习之摄影图像处理:核心算法与案例精萃》书籍,目前有超过40期内容。
请大家使用相关标签进行阅读,包括#图像降噪# #超分辨# #图像修复# #图像增强#等。




4.7 其他板块
除了以上内容,剩下还有一些板块,包括文本检测和识别,医学图像,点云图像等相关内容。


请大家使用相关标签进行阅读,包括#文本检测和识别# #医学图像# #点云图像#等。
5. 数据集板块
数据是AI任务的基础,星球里不仅包括ImageNet、EffectNet等超过100G的大型数据集,不容易下载的数据集,也包括各个方向的有趣的数据集,如人脸人体、动植物、美学与图像质量、自动驾驶等领域,目前有超过50个数据集供下载,以云盘的方式提供下载链接,大家还可以求助小伙伴获得新的数据集,请大家选择#数据集标签进行阅读。




5.1 大型通用数据集
包括图像分类领域最常用数据集ImageNet,美学评估大型数据集AVA,自动驾驶领域大型数据集Cityscape等。


5.2 人脸人体数据集
包括人脸识别,人脸风格化,人脸属性识别(人脸表情、人脸年龄、人脸姿态)等相关的数十个数据集。


5.3 自由分享的数据集
除了统一提供的数据集,还有一些由星球的小伙伴进行自由分享的数据集,大家可以自由交流。


6. 其他板块
除了上述板块,知识星球还包括#每周论文推荐,#AI1000问,#看图猜技术,#GitHub项目,#AI好书等板块。
#每周论文推荐内容与公众号的相关文章基本同步,用于推荐同一主题的书籍。


#AI好书板块用于分享一些优质的电子书。


#GitHub项目用于同步一些好的项目。
#看图猜技术以问答的形式提出一些小作业。
#AI1000问提出了一些容易忽视的小问题。


这些板块就不做详细介绍,大家可以自己去星球点击相应标签感受一下。
7. 如何加入
即日起有三AI-知识星球仅作为学员专用的资源共享平台,不再公开对外发布,主要原因一方面是因为星球已经不再是重点维护社区,内容没有有三AI-小鹅通视频专栏更新频繁,另一方面是为了防止恶意下载和共享。
对于老用户来说,一年时间满后,可以自行选择是否续费,现在续费的年费在100元左右,价格低廉,不续费也可以看加入日期之前的内容。对于新用户来说,如果想要加入知识星球,必须由有三一对一审核,且满足在有三AI-小鹅通购买视频课程超过500元,即可获赠一年的使用权限(凭订单号添加有三微信Longlongtogo即可)。
由于知识星球的部分板块内容不适合初学者,比如网络结构1000变中比较新的模型,因此我们希望需要付费进行学习的朋友,先补足相关的基础知识,下面是一些推荐的内容。
1、深度学习计算机视觉基础合集专栏,有超过1500页PPT,70小时讲解的CV核心内容,掌握分类检测分割GAN与数据使用,有它就够了。


其中图像分类课程当前包含的内容共约12个小时,PPT数量超过300页。
理论部分涵盖了深度学习之图像分类的各个研究方向,如图像分类简介、多类别图像分类、细粒度图像分类,多标签图像分类,弱监督图像分类,零样本图像分类等,既有足够的宽度,也具备有足够的深度。
实践部分一共已经包含了5个实践案例,分别为人脸表情分类基本模型实战,动物细粒度分类实战,生活用品多标签图像分类实战,基于血红细胞的图像分类竞赛技巧,简单图像分类任务数据增强实践,基于Pytorch实战来详解图像分类任务实践。
大纲如下:


其中图像分割课程当前包含的内容共约14个小时,PPT总数约400页。
理论部分涵盖了深度学习之图像分割的各个研究方向,如图像分割基础、语义分割、弱监督语义分割,Image Matting,实例分割等,既有足够的宽度,也具备有足够的深度。
实践部分一共已经包含了4个实践案例,分别为人脸嘴唇分割实战,缺陷分割实战,Image Matting人像抠图实战,Mask RCNN实例分割实战,后续可能还会增加其他方向的实战
大纲如下:


其中目标检测课程当前包含的内容共约28个小时,PPT总数约400页。
理论部分包括目标检测相关基础,包括流程与评价指标,two-stage算法-Faster RCNN系列详解、one-stage算法-YOLO系列详解,Anchor-free算法系列详解(包括Densebox,CenterNet,CornetNet等);


实践部分共包含4个案例,分别是YOLOv3实战(工业缺陷检测)、Faster-RCNN实战(猫脸检测),CenterNet(电路板缺陷检测),MMdetection框架使用;


其中图像生成GAN课程当前包含的内容共约6个小时,PPT总数约200页。
理论部分详细解读了基本的卷积GAN,各类条件生成GAN,强大的StyleGAN系列,数据增强与仿真GAN,3D与视频生成GAN,既有足够的宽度,也具备有足够的深度。
实践一共已经包含了2个Pytorch实战案例,分别为DCGAN人脸嘴唇表情生成任务,StyleGAN人脸图像生成任务,后续还会增加3D与视频部分的实践内容。
课程大纲如下:


完整的内容介绍,请大家阅读本文:【CV必备】超过1500页PPT,70小时讲解的CV核心内容,掌握分类检测分割GAN与数据使用,有它就够了
2、有三AI- CV秋季划模型算法组,循序渐进地掌握模型分析,模型设计,模型优化,模型部署等内容。
其中模型分析课程当前包含的内容共约3个小时,PPT总数约120页。


其中模型设计课程当前包含的内容共约20个小时,PPT总数约450页。


理论部分内容包括4节:网络深度与模型性能,网络宽度与模型性能,注意力机制,轻量化网络理论。
(1) 基于网络深度的CNN模型设计,内容包括经典浅层卷积网络的设计模型如neocognitron、经典模型AlexNet,VGGNet,ResNet。
(2) 基于网络宽度的CNN模型设计,内容包括多分支经典模型如GoogLeNet,ResNext等
(3) 经典注意力机制CNN模型设计,内容包括空间注意力模型、通道注意力模型、 混合注意力模型。
(3) 轻量级模型设计,内容包括Xception网络、MobileNet V1和V2网络、 ShuffleNet V1和V2网络、SqueezeNet网络。
实践部分内容包括4个:基于ResNet的垃圾分类实战,基于InceptionNet系列的花卉分类实战,基于SeNet的人种分类实战,Pytorch模型安卓端部署。
其中模型优化课程当前包含的内容共约10个小时,PPT总数约360页。


理论部分内容包括深度学习模型压缩的核心领域,模型剪枝、模型量化、知识蒸馏等。
实战部分内容包括4个:Distiller模型压缩框架使用,结构化模型剪枝实践,8bit模型量化实践,模型蒸馏实践。
其中模型部署课程当前包含的内容共约8个小时,包含了6个平台和框架案例,分别为原生Pytorch在Android手机端部署,NCNN的通用部署,Tengine在EAIDK嵌入式平台上的部署,TensorRT在服务器端的模型优化与部署,微信小程序的前后端完整部署,MNN在Android手机端部署,大纲如下,后续还会增加其他硬件平台与部署框架。


关于以上课程的完整介绍,请大家阅读下文:
【总结】最专业最系统的CV内容,有三AI所有免费与付费的计算机视觉课程汇总(2022年8月)

所有视频课程到有三AI-小鹅通视频平台进行学习,那是我们官方唯一的视频学习平台。小鹅通是一个很成熟的知识付费平台,我们有唯一的小鹅通知识店铺账号


由于有很多用户之前不熟悉小鹅通,首先我们给大家介绍一下登录方式和课程观看方式。
1 小鹅通目前有多种登录与课程学习方式,建议大家使用以下两种:
(1) 在浏览器上进行学习,通过微信扫码或者手机验证码登录。可以直接关注“有三教育科技”微信公众号,然后点击左下方“我的课程”登录观看



有三教育科技有三AI学堂是北京有三教育科技有限公司官方服务平台,与有三AI公众号,有三AI知识星球同属自媒体人言有三维护的系统性原创知识教育平台
如果是首次登录,进入“首页”后,点击左下角“我的”进入设置,再点击页面中的“账号设置”进行手机号和关联账号(微信号)绑定


(2) 使用小鹅通app进行学习,有手机版和Pad版,可以通过手机号码或者微信账号登录


观看时可点击视频左下角“框”,进行全屏播放


2 为什么选定小鹅通平台作为我们官方服务平台
(1) 小鹅通平台可以绑定微信公众号,微信用户可以通过“有三教育科技”微信公众号界面直接登录小鹅通,在线观看视频课程
(2) 小鹅通平台支持直播服务,学员也可以在线观看直播课程
(3) 支持图文与视频,并且可以非常方便进行用户管理
所以我们最终选定了小鹅通平台作为官方服务平台,我们的店铺地址为:
https://appcdfgt3n15676.h5.xiaoeknow.com

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×
回复

使用道具 举报

0

主题

8

回帖

13

积分

新手上路

积分
13
发表于 2023-7-25 15:51:40 | 显示全部楼层
现代科学技术高度社会化,在科学理论与技术方法上更加趋向综合与统一,为了满足人工智能不同领域研究者相互交流、彼此启发的需求,我们发起了人工智能前沿学生论坛SFFAI,邀请一线科研人员分享、讨论人工智能各个领域的前沿思想和最新成果,使专注于各个细分领域的研究者开拓视野、触类旁通。
https://bbs.sffai.com/
回复

使用道具 举报

0

主题

2

回帖

0

积分

新手上路

积分
0
发表于 2023-7-25 15:52:06 | 显示全部楼层
欢迎大家多访问智源社区: hub.baai.ac.cn
依托智源研究院强大学者资源,内行AI人自己的家园。
每年6月举办的智源大会,邀请几百位世界顶级专家(每年都有图灵奖得主)做报告,相信大家很多人都参加过。
日常每日都会由人工智能学者推荐几十条AI论文、文章、咨询,每周都有多场深度分享,主打“听AI讲座,上智源社区”。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|T9AI - 深度人工智能平台 ( 沪ICP备2023010006号 )

GMT+8, 2024-11-21 23:57 , Processed in 0.054065 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表