找回密码
 立即注册
查看: 667|回复: 0

各种AI模型拿来就能用!五大深度学习模型库大盘点

[复制链接]

1

主题

0

回帖

16

积分

新手上路

积分
16
发表于 2023-5-8 10:28:23 | 显示全部楼层 |阅读模式
乾明 编纂整理
量子位 出品 | 公众号 QbitAI
你知道PyTorch Hub吗?
这个Facebook的深度学习模型库,一问世就引发了巨大存眷。
因为它太强了:
ResNet、BERT、GPT、VGG、PGAN、MobileNet等深度学习范围的经典模型,只需输入一行代码,就能一键调用。
不外,人工智能范围,这样的模型库不仅仅只有PyTorch Hub一个,还有其他4个(来自@爱可可-爱生活):
TensorFlow Hub、TensorFlow Models、Model Zoo、Models – IBM Developer
在这些处所,深度学习模型同样能够“拿来就能用”。
PyTorch Hub




官方介绍,PyTorch Hub是一个简易API和工作流程,为复现研究提供了基本构建模块,包含预训练模型库。
PyTorch Hub撑持Colab,能与论文代码结合网站Papers With Code集成,用于更广泛的研究。
此外,Facebook还鼓励学者把本身的模型发布到这里来,来让PyTorch Hub越来越强大。
目前,PyTorch Hub有26个模型可以使用,它们分袂是:
Deeplabv3-ResNet101、Transformer (NMT)、WaveGlow、ResNext WSL、DCGAN on FashionGen、Progressive Growing of GANs (PGAN)、BERT、GPT、GPT-2、Transformer-XL、U-Net for brain MRI、SSD、Tacotron 2、RoBERTa、AlexNet、Densenet、FCN-ResNet101、GoogLeNet、Inception_v3、MobileNet v2、ResNet、ResNext、ShuffleNet v2、SqueezeNet、vgg-nets、Wide ResNet
PyTorch Hub:
https://pytorch.org/hub
GitHub地址:
https://github.com/pytorch/hub
相关报道:
PyTorch Hub发布!一行代码调用最潮模型,图灵奖得主强推
TensorFlow Hub





官方介绍,TensorFlow Hub是一个库,用于发布、发现和使用机器学习模型中可反复操作的部门。

模块是一个独立的 TensorFlow 图部门,此中包含权重和资源,可以在一个进程中供分歧任务反复使用(称为迁移学习)。
从而实现使用较小的数据集训练模型;改善泛化效果,以及加快训练速度。
目前,TensorFlow Hub一共有20个API、75个用于文本嵌入的模块、71个用于图像特征向量模块,以及2个用于视频分类的模块等等。



模块基本上全来自谷歌官方,来自谷歌AI的有大大都,还有一些来自DeepMind。
TensorFlow Hub撑持使用语言、网络、提供者、数据集以及类型来对模块进行精确筛查。此中有8个模块撑持中文。
TensorFlow Hub:
https://www.tensorflow.org/hub
GitHub地址:
https://github.com/tensorflow/hub
TensorFlow Models

一个GitHub上的存储库,包含了许多在TensorFlow中实现的模型,一共分为两类:官方模型和研究模型。
官方模型,是使用TensorFlow的高级API的示例模型的调集。
它们能够得到良好的维护、测试,并与最新的不变的TensorFlow API保持同步。项目创建者暗示,保举新的TensorFlow用户从这里开始,目前可用的模型有:
BERT、Boosted Trees、MNIST、ResNet、Transformer、Wide_deep
研究模型,是研究人员在TensorFlow中实现的大量模型调集。它们在发布分支中不受官方撑持或不成用;模型维护等方面取决于各个研究人员。目前有51个模型,覆盖计算机视觉、自然语言措置范围等等。



TensorFlow Models:
Model Zoo

这个平台,由新加坡名为Jing Yu Koh本科生牵头搭建。与上述的几个平台分歧,这个平台上提供预训练模型,不仅仅只是完全针对于Pytorch或者TensorFlow。
在每个模型上,会标注出这个模型在GitHub的标星数量,模型适用的框架、范围以及模型的使用条件/用途。



目前已经收集了数百个模型,覆盖的范围包罗计算机视觉、自然语言措置、强化学习、无监督学习、音频和语音、生成模型。
涉及到的框架有:TensorFlow、Caffe、Caffe2、PyTorch、MXNet、Keras、Chainer。
Model Zoo:
https://modelzoo.co/
Models – IBM Developer





IBM开放的预训练深度模型库,目前一共有32个模型,分为可部署和可训练模型两类,涉及18个范围,分袂是:
声音分类、音频特征提取、音频建模、面部识别、图像分类、图像特征提取、图像到图像的翻译或转换、图像到文本的翻译、语言建模、定名实体识别、自然语言措置、图片中的方针检测、安全、文本分类、文本特征提取、文本到图像的翻译、时间序列预测、视频分类
Models – IBM Developer
小结

最后,小小总结一下。
上文提到的这些深度模型库中,有一些是专用的,比如PyTorch Hub、TensorFlow Hub和TensorFlow Models,只能够在PyTorch框架或者TensorFlow中使用,但其使用起来非常便利,能够快速调用部署。
其他的,比如Model Zoo则是由个人开发者收集,覆盖面很广泛,模型也很多,但相对来说,部署起来并没有直接操作PyTorch Hub或TensorFlow Hub便利。
大师可以按照本身的需求选择相应深度学习库。
操作好了,可以事半功倍~
— 完 —
量子位 · QbitAI
վ'ᴗ' ի 追踪AI技术和产物新动态
戳右上角「+存眷」获取最新资讯↗↗
如果喜欢,请分享or点赞吧~比心❤

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|T9AI - 深度人工智能平台 ( 沪ICP备2023010006号 )

GMT+8, 2024-11-23 19:09 , Processed in 0.056673 second(s), 24 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表