易启妮 发表于 2023-5-22 13:15:09

手把手教你如何本身设计实现一个深度学习框架(附代码实现)

作者丨王桂波@知乎(已授权)
当前深度学习框架越来越成熟,对于使用者而言封装程度越来越高,好处就是此刻可以非常快速地将这些框架作为东西使用,用非常少的代码就可以构建模型进行尝试,坏处就是可能背后地实现都被隐藏起来了。在这篇文章里笔者将设计和实现一个、轻量级的(约 200 行)、易于扩展的深度学习框架 tinynn(基于 Python 和 Numpy 实现),但愿对大师了解深度学习的基本组件、框架的设计和实现有必然的辅佐。
本文首先会从深度学习的流程开始分析,对神经网络中的关键组件抽象,确定基本框架;然后再对框架里各个组件进行代码实现;最后基于这个框架实现了一个 MNIST 分类的示例,并与 Tensorflow 做了简单的对比验证。
目录


[*]组件抽象
[*]组件实现
[*]整体布局
[*]MNIST 例子
[*]总结
[*]附录
[*]参考
组件抽象

首先考虑神经网络运算的流程,神经网络运算主要包含训练 training 和预测 predict (或 inference) 两个阶段,训练的基本流程是:输入数据 -> 网络层前向传布 -> 计算损掉 -> 网络层反向传布梯度 -> 更新参数,预测的基本流程是 输入数据 -> 网络层前向传布 -> 输出成果。从运算的角度看,主要可以分为三种类型的计算:

[*]数据在网络层之间的流动:前向传布和反向传布可以看做是张量 Tensor(多维数组)在网络层之间的流动(前向传布流动的是输入输出,反向传布流动的是梯度),每个网络层会进行必然的运算,然后将成果输入给下一层
[*]计算损掉:衔接前向和反向传布的中间过程,定义了模型的输出与真实值之间的差异,用来后续提供反向传布所需的信息
[*]参数更新:使用计算得到的梯度对网络参数进行更新的一类计算
基于这个三种类型,我们可以对网络的基本组件做一个抽象

[*]tensor 张量,这个是神经网络中数据的基本单元
[*]layer 网络层,负责接收上一层的输入,进行该层的运算,将成果输出给下一层,由于 tensor 的流动有前向和反向两个标的目的,因此对于每种类型网络层我们都需要同时实现 forward 和 backward 两种运算
[*]loss 损掉,在给定模型预测值与真实值之后,该组件输出损掉值以及关于最后一层的梯度(用于梯度回传)
[*]optimizer 优化器,负责使用梯度更新模型的参数
然后我们还需要一些组件把上面这个 4 种基本组件整合到一起,形成一个 pipeline

[*]net 组件负责打点 tensor 在 layers 之间的前向和反向传布,同时能提供获取参数、设置参数、获取梯度的接口
[*]model 组件负责整合所有组件,形成整个 pipeline。即 net 组件进行前向传布 -> losses 组件计算损掉和梯度 -> net 组件将梯度反向传布 -> optimizer 组件将梯度更新到参数。
基本的框架图如下图


组件实现

按照上面的抽象,我们可以写出整个流程代码如下。
# define model
net = Net()
model = Model(net, loss_fn, optimizer)

# training
pred = model.forward(train_X)
loss, grads = model.backward(pred, train_Y)
model.apply_grad(grads)

# inference
test_pred = model.forward(test_X)首先定义 net,net 的输入是多个网络层,然后将 net、loss、optimizer 一起传给 model。model 实现了 forward、backward 和 apply_grad 三个接口分袂对应前向传布、反向传布和参数更新三个功能。接下来我们看这里边各个部门分袂如何实现。
tensor

tensor 张量是神经网络中基本的数据单元,我们这里直接使用 numpy.ndarray 类作为 tensor 类的实现
layer

上面流程代码中 model 进行 forward 和 backward,其实底层都是网络层在进行实际运算,因此网络层需要有提供 forward 和 backward 接口进行对应的运算。同时还应该将该层的参数和梯度记录下来。先实现一个基类如下
# layer.py
class Layer(object):
    def __init__(self, name):
      self.name = name
      self.params, self.grads = None, None

    def forward(self, inputs):
      raise NotImplementedError

    def backward(self, grad):
      raise NotImplementedError
最基础的一种网络层是全连接网络层,实现如下。forward 方式接收上层的输入 inputs,实现 wx+b 的运算;backward 的方式接收来自上层的梯度,计算关于参数 w, b 和输入的梯度,然后返回关于输入的梯度。这三个梯度的推导可以见附录,这里直接给出实现。w_init 和 b_init 分袂是参数 w 和 b 的初始化器,这个我们在此外的一个实现初始化器中文件 initializer.py 去实现,这部门不是核心部件,所以在这里不展开介绍。
# layer.py
class Dense(Layer):
    def __init__(self, num_in, num_out,
               w_init=XavierUniformInit(),
               b_init=ZerosInit()):
      super().__init__(”Linear”)

      self.params = {
            ”w”: w_init(),
            ”b”: b_init()}

      self.inputs = None

    def forward(self, inputs):
      self.inputs = inputs
      return inputs @ self.params[”w”] + self.params[”b”]

    def backward(self, grad):
      self.grads[”w”] = self.inputs.T @ grad
      self.grads[”b”] = np.sum(grad, axis=0)
      return grad @ self.params[”w”].T
同时神经网络中的另一个重要的部门是激活函数。激活函数可以看做是一种网络层,同样需要实现 forward 和 backward 方式。我们通过担任 Layer 类实现激活函数类,这里实现了最常用的 ReLU 激活函数。func 和 derivation_func 方式分袂实现对应激活函数的正向计算和梯度计算。
# layer.py
class Activation(Layer):
    ”””Base activation layer”””
    def __init__(self, name):
      super().__init__(name)
      self.inputs = None

    def forward(self, inputs):
      self.inputs = inputs
      return self.func(inputs)

    def backward(self, grad):
      return self.derivative_func(self.inputs) * grad

    def func(self, x):
      raise NotImplementedError

    def derivative_func(self, x):
      raise NotImplementedError


class ReLU(Activation):
    ”””ReLU activation function”””
    def __init__(self):
      super().__init__(”ReLU”)

    def func(self, x):
      return np.maximum(x, 0.0)

    def derivative_func(self, x):
      return x > 0.0
net

上文提到 net 类负责打点 tensor 在 layers 之间的前向和反向传布。forward 方式很简单,按挨次遍历所有层,每层计算的输出作为下一层的输入;backward 则逆序遍历所有层,将每层的梯度作为下一层的输入。这里我们还将每个网络层参数的梯度保留下来返回,后面参数更新需要用到。此外 net 类还实现了获取参数、设置参数、获取梯度的接口,也是后面参数更新时需要用到
# net.py
class Net(object):
    def __init__(self, layers):
      self.layers = layers

    def forward(self, inputs):
      for layer in self.layers:
            inputs = layer.forward(inputs)
      return inputs

    def backward(self, grad):
      all_grads = []
      for layer in reversed(self.layers):
            grad = layer.backward(grad)
            all_grads.append(layer.grads)
      return all_grads[::-1]

    def get_params_and_grads(self):
      for layer in self.layers:
            yield layer.params, layer.grads

    def get_parameters(self):
      return

    def set_parameters(self, params):
      for i, layer in enumerate(self.layers):
            for key in layer.params.keys():
                layer.params = params
losses

上文我们提到 losses 组件需要做两件事情,给定了预测值和真实值,需要计算损掉值和关于预测值的梯度。我们分袂实现为 loss 和 grad 两个方式,这里我们实现多分类回归常用的 SoftmaxCrossEntropyLoss 损掉。这个的损掉 loss 和梯度 grad 的计算公式推导进文末附录,这里直接给出成果: 多分类 softmax 交叉熵的损掉为 J_{CE}(y, \hat{y}) = -\sum_{i=1}^N \mathbb{log}(\hat{y_i^{c}}) \\
梯度稍微复杂一点,方针类别和非方针类此外计算公式分歧。对于方针类别维度,其梯度为对应维度模型输出概率减一,对于非方针类别维度,其梯度为对应维度输出概率本身。 \frac{\partial J_{ce}}{\partial o^c}=      \begin{cases}      (\hat{y}^c-1) / N & \text{target class } c\\\ y^{\tilde{c}} / N & \text{non-target class} \tilde{c}   \\ \end{cases}\\
代码实现如下
# loss.py
class BaseLoss(object):
    def loss(self, predicted, actual):
      raise NotImplementedError

    def grad(self, predicted, actual):
      raise NotImplementedError


class CrossEntropyLoss(BaseLoss):
    def loss(self, predicted, actual):
      m = predicted.shape
      exps = np.exp(predicted - np.max(predicted, axis=1, keepdims=True))
      p = exps / np.sum(exps, axis=1, keepdims=True)
      nll = -np.log(np.sum(p * actual, axis=1))
      return np.sum(nll) / m

    def grad(self, predicted, actual):
      m = predicted.shape
      grad = np.copy(predicted)
      grad -= actual
      return grad / m
optimizer

optimizer 主要实现一个接口 compute_step,这个方式按照当前的梯度,计算返回实际优化时每个参数改变的步长。我们在这里实现常用的 Adam 优化器。
# optimizer.py
class BaseOptimizer(object):
    def __init__(self, lr, weight_decay):
      self.lr = lr
      self.weight_decay = weight_decay

    def compute_step(self, grads, params):
      step = list()
      # flatten all gradients
      flatten_grads = np.concatenate(
            )
      # compute step
      flatten_step = self._compute_step(flatten_grads)
      # reshape gradients
      p = 0
      for param in params:
            layer = dict()
            for k, v in param.items():
                block = np.prod(v.shape)
                _step = flatten_step.reshape(v.shape)
                _step -= self.weight_decay * v
                layer = _step
                p += block
            step.append(layer)
      return step

    def _compute_step(self, grad):
      raise NotImplementedError

class Adam(BaseOptimizer):
    def __init__(self, lr=0.001, beta1=0.9, beta2=0.999,
               eps=1e-8, weight_decay=0.0):
      super().__init__(lr, weight_decay)
      self._b1, self._b2 = beta1, beta2
      self._eps = eps

      self._t = 0
      self._m, self._v = 0, 0

    def _compute_step(self, grad):
      self._t += 1
      self._m = self._b1 * self._m + (1 - self._b1) * grad
      self._v = self._b2 * self._v + (1 - self._b2) * (grad ** 2)
      # bias correction
      _m = self._m / (1 - self._b1 ** self._t)
      _v = self._v / (1 - self._b2 ** self._t)
      return -self.lr * _m / (_v ** 0.5 + self._eps)
model

最后 model 类实现了我们一开始设计的三个接口 forward、backward 和 apply_grad ,forward 直接调用 net 的 forward ,backward 中把 net 、loss、optimizer 串起来,先计算损掉 loss,然后反向传布得到梯度,然后 optimizer 计算步长,最后由 apply_grad 对参数进行更新
# model.py
class Model(object):
    def __init__(self, net, loss, optimizer):
      self.net = net
      self.loss = loss
      self.optimizer = optimizer

    def forward(self, inputs):
      return self.net.forward(inputs)

    def backward(self, preds, targets):
      loss = self.loss.loss(preds, targets)
      grad = self.loss.grad(preds, targets)
      grads = self.net.backward(grad)
      params = self.net.get_parameters()
      step = self.optimizer.compute_step(grads, params)
      return loss, step

    def apply_grad(self, grads):
      for grad, (param, _) in zip(grads, self.net.get_params_and_grads()):
            for k, v in param.items():
                param += grad
整体布局

最后我们实现出来核心代码部门文件布局如下
tinynn
├── core
│   ├── initializer.py
│   ├── layer.py
│   ├── loss.py
│   ├── model.py
│   ├── net.py
│   └── optimizer.py此中 initializer.py 这个模块上面没有展开讲,主要实现了常见的参数初始化方式(零初始化、Xavier 初始化、He 初始化等),用于给网络层初始化参数。
MNIST 例子

框架基本搭起来后,我们找一个例子来用 tinynn 这个框架 run 起来。这个例子的基本一些配置如下

[*]数据集:MNIST
[*]任务类型:多分类
[*]网络布局:三层全连接 INPUT(784) -> FC(400) -> FC(100) -> OUTPUT(10),这个网络接收 (N, 784) 的输入,此中 N 是每次输入的样本数,784 是每张 (28, 28) 的图像展平后的向量,输出维度为 (N, 10) ,此中 N 是样本数,10 是对应图片在 10 个类别上的概率
[*]激活函数:ReLU
[*]损掉函数:SoftmaxCrossEntropy
[*]optimizer:Adam(lr=1e-3)
[*]batch_size:128
[*]Num_epochs:20
这里我们忽略数据载入、预措置等一些筹备代码,只把核心的网络布局定义和训练的代码贴出来如下
# example/mnist/run.py
net = Net([
Dense(784, 400),
ReLU(),
Dense(400, 100),
ReLU(),
Dense(100, 10)
])
model = Model(net=net, loss=SoftmaxCrossEntropyLoss(), optimizer=Adam(lr=args.lr))

iterator = BatchIterator(batch_size=args.batch_size)
evaluator = AccEvaluator()
for epoch in range(num_ep):
    for batch in iterator(train_x, train_y):
       # training
      pred = model.forward(batch.inputs)
      loss, grads = model.backward(pred, batch.targets)
      model.apply_grad(grads)
    # evaluate every epoch
    test_pred = model.forward(test_x)
    test_pred_idx = np.argmax(test_pred, axis=1)
    test_y_idx = np.asarray(test_y)
    res = evaluator.evaluate(test_pred_idx, test_y_idx)
    print(res)
运行成果如下
# tinynn
Epoch 0        {'total_num': 10000, 'hit_num': 9658, 'accuracy': 0.9658}
Epoch 1        {'total_num': 10000, 'hit_num': 9740, 'accuracy': 0.974}
Epoch 2        {'total_num': 10000, 'hit_num': 9783, 'accuracy': 0.9783}
Epoch 3        {'total_num': 10000, 'hit_num': 9799, 'accuracy': 0.9799}
Epoch 4        {'total_num': 10000, 'hit_num': 9805, 'accuracy': 0.9805}
Epoch 5        {'total_num': 10000, 'hit_num': 9826, 'accuracy': 0.9826}
Epoch 6        {'total_num': 10000, 'hit_num': 9823, 'accuracy': 0.9823}
Epoch 7        {'total_num': 10000, 'hit_num': 9819, 'accuracy': 0.9819}
Epoch 8        {'total_num': 10000, 'hit_num': 9820, 'accuracy': 0.982}
Epoch 9        {'total_num': 10000, 'hit_num': 9838, 'accuracy': 0.9838}
Epoch 10        {'total_num': 10000, 'hit_num': 9825, 'accuracy': 0.9825}
Epoch 11        {'total_num': 10000, 'hit_num': 9810, 'accuracy': 0.981}
Epoch 12        {'total_num': 10000, 'hit_num': 9845, 'accuracy': 0.9845}
Epoch 13        {'total_num': 10000, 'hit_num': 9845, 'accuracy': 0.9845}
Epoch 14        {'total_num': 10000, 'hit_num': 9835, 'accuracy': 0.9835}
Epoch 15        {'total_num': 10000, 'hit_num': 9817, 'accuracy': 0.9817}
Epoch 16        {'total_num': 10000, 'hit_num': 9815, 'accuracy': 0.9815}
Epoch 17        {'total_num': 10000, 'hit_num': 9835, 'accuracy': 0.9835}
Epoch 18        {'total_num': 10000, 'hit_num': 9826, 'accuracy': 0.9826}
Epoch 19        {'total_num': 10000, 'hit_num': 9819, 'accuracy': 0.9819}可以看到测试集 accuracy 随着训练进行在慢慢提升,这说明数据在框架中确实按照正确的方式进行流动和计算,参数得到正确的更新。为了对比下效果,我用 Tensorflow 1.13 实现了不异的网络布局、采用不异的采数初始化方式、优化器配置等等,得到的成果如下
# Tensorflow 1.13.1
Epoch 0        {'total_num': 10000, 'hit_num': 9591, 'accuracy': 0.9591}
Epoch 1        {'total_num': 10000, 'hit_num': 9734, 'accuracy': 0.9734}
Epoch 2        {'total_num': 10000, 'hit_num': 9706, 'accuracy': 0.9706}
Epoch 3        {'total_num': 10000, 'hit_num': 9756, 'accuracy': 0.9756}
Epoch 4        {'total_num': 10000, 'hit_num': 9722, 'accuracy': 0.9722}
Epoch 5        {'total_num': 10000, 'hit_num': 9772, 'accuracy': 0.9772}
Epoch 6        {'total_num': 10000, 'hit_num': 9774, 'accuracy': 0.9774}
Epoch 7        {'total_num': 10000, 'hit_num': 9789, 'accuracy': 0.9789}
Epoch 8        {'total_num': 10000, 'hit_num': 9766, 'accuracy': 0.9766}
Epoch 9        {'total_num': 10000, 'hit_num': 9763, 'accuracy': 0.9763}
Epoch 10        {'total_num': 10000, 'hit_num': 9791, 'accuracy': 0.9791}
Epoch 11        {'total_num': 10000, 'hit_num': 9773, 'accuracy': 0.9773}
Epoch 12        {'total_num': 10000, 'hit_num': 9804, 'accuracy': 0.9804}
Epoch 13        {'total_num': 10000, 'hit_num': 9782, 'accuracy': 0.9782}
Epoch 14        {'total_num': 10000, 'hit_num': 9800, 'accuracy': 0.98}
Epoch 15        {'total_num': 10000, 'hit_num': 9837, 'accuracy': 0.9837}
Epoch 16        {'total_num': 10000, 'hit_num': 9811, 'accuracy': 0.9811}
Epoch 17        {'total_num': 10000, 'hit_num': 9793, 'accuracy': 0.9793}
Epoch 18        {'total_num': 10000, 'hit_num': 9818, 'accuracy': 0.9818}
Epoch 19        {'total_num': 10000, 'hit_num': 9811, 'accuracy': 0.9811}

可以看到两者效果上大差不差,测试集准确率都收敛到 0.982 摆布,就单次的尝试看比 Tensorflow 稍微好一点点。
总结

tinynn 相关的源代码在这个 repo 里。目前撑持:

[*]layer :全连接层、2D 卷积层、 2D反卷积层、MaxPooling 层、Dropout 层、BatchNormalization 层、RNN 层以及 ReLU、Sigmoid、Tanh、LeakyReLU、SoftPlus 等激活函数
[*]loss: SigmoidCrossEntropy、SoftmaxCrossEntroy、MSE、MAE、Huber
[*]optimizer:RAam、Adam、SGD、RMSProp、Momentum 等优化器,而且增加了动态调节学习率 LRScheduler
[*]实现了 mnist(分类)、nn_paint(回归)、DQN(强化学习)、AutoEncoder 和 DCGAN (无监督)等常见模型。见 tinynn/examples
tinynn 还有很多可以继续完善的处所受限于时间还没有完成,笔者在空闲时间会进行维护和更新。
当然 tinynn 只是一个「玩具」版本的深度学习框架,一个成熟的深度学习框架至少还需要:撑持自动求导、高运算效率(静态语言加速、撑持 GPU 加速)、提供丰硕的算法实现、提供易用的接口和详细的文档等等。这个小项目的出发点更多地是学习,在设计和实现 tinynn 的过程中笔者个人学习确实到了很多东西,包罗如何抽象、如何设计组件接口、如何更效率的实现、算法的具体细节等等。对笔者而言写这个小框架除了了解深度学习框架的设计与实现之外还有一个好处:后续可以在这个框架上快速地实现一些新的算法,新的参数初始化方式,新的优化算法,新的网络布局设计,都可以快速地在这个小框架长进行尝试。 如果你对本身设计实现一个深度学习框架也感兴趣,但愿看完这篇文章会对你有所辅佐,也欢迎大师提 PR 一起贡献代码~
附录: Softmax 交叉熵损掉和梯度推导

多分类下交叉熵损掉如下式:
J_{CE}(y, \hat{y}) = -\sum_{i=1}^N\sum_{k=1}^K y_i^k \mathbb{log}(\hat{y_i^k}) \\
此中 y, \hat{y} 分袂是真实值和模型预测值, N 是样本数, K 是类别个数。由于真实值一般为一个 one-hot 向量(除了真实类别维度为 1 其他均为 0),因此上式可以化简为
J_{CE}(y, \hat{y}) = -\sum_{i=1}^N \mathbb{log}(\hat{y_i^{c}})\\
此中 c 是代表真实类别, \hat{y_i^c} 代表第 i 个样本 c 类的预测概率。即我们需要计算的是每个样本在真实类别上的预测概率的对数的和,然后再取负就是交叉熵损掉。 接下来推导如何求解该损掉关于模型输出的梯度,用 o 暗示模型输出,在多分类中凡是最后会使用 Softmax 将网络的输出归一化为一个概率分布,则 Softmax 后的输出为
\hat{y}^c = \frac{\mathbb{exp}(o^c)}{\sum_{k=1}^{K} \mathbb{exp}(o^k)}\\
代入上面的损掉函数
J_{CE} =-\sum_{i=1}^{N} (o_i^c - \mathbb{log}(\sum_{k=1}^{K} \mathbb{exp}(o_i^k)))\\
求解 J_{CE} 关于输出向量 o 的梯度,可以将 o 分为方针类别地址维度 o^c 和非方针类别维度 o^{\tilde{c}} 。首先看方针类别地址维度 o^c \frac{\partial J_{ce}}{\partial o^c} = -\sum_{i=1}^N(1-\frac{\mathbb{exp}(o^c)}{\sum_{k=1}^{K} \mathbb{exp}(o^k)})=\sum_{i=1}^N(\hat{y}^c-1) \\
再看非方针类别地址维度 o^{\tilde{c}}
\frac{\partial J_{ce}}{\partial o^{\tilde{c}}} = -\sum_{i=1}^N(-\frac{\mathbb{exp}(o^c)}{\sum_{k=1}^{K} \mathbb{exp}(o^k)}) = \sum_{i=1}^N y^{\tilde{c}} \\
可以看到对于方针类别维度,其梯度为对应维度模型输出概率减一,对于非方针类别维度,其梯度为对应维度输出概率真身。
参考

[*]Deep Learning, Goodfellow, et al. (2016)
[*]Joel Grus - Livecoding Madness - Let's Build a Deep Learning Library
[*]TensorFlow Documentation
[*]PyTorch Documentation
页: [1]
查看完整版本: 手把手教你如何本身设计实现一个深度学习框架(附代码实现)